Electrical peripheral nerve stimulation relieves bone cancer pain by inducing Arc protein expression in the spinal cord dorsal horn

نویسندگان

  • Ke-fu Sun
  • Wan-wen Feng
  • Yue-peng Liu
  • Yan-bin Dong
  • Li Gao
  • Hui-lin Yang
چکیده

Objective The analgesic effect on chronic pain of peripheral nerve stimulation (PNS) has been proven, but its underlying mechanism remains unknown. Therefore, this study aimed to assess the analgesic effect of PNS on bone cancer pain in a rat model and to explore the underlying mechanism. Materials and methods PNS on sciatic nerves with bipolar electrode was performed in both naïve and bone cancer pain model rats. Then, the protein levels of activity-regulated cytoskeleton-associated protein (Arc), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor 1 (GluA1), and phosphate N-methyl-d-aspartic acid-type glutamate receptor subunit 2B (pGluNR2B) in spinal cord were evaluated by immunohistochemistry and Western blotting. Thermal paw withdraw latency and mechanical paw withdraw threshold were used to estimate the analgesic effect of PNS on bone cancer pain. Intrathecal administration of Arc shRNA was used to inhibit Arc expression in the spinal cord. Results PNS at 60 and 120 Hz for 20 min overtly induced Arc expression in the spinal cord, increased thermal pain thresholds in naïve rats, and relieved bone cancer pain; meanwhile, 10 Hz PNS did not achieve those results. In addition, PNS at 60 and 120 Hz also reduced the expression of GluA1, but not pGluNR2B, in the spinal cord. Finally, the anti-nociceptive effect and GluA1 downregulation induced by PNS were inhibited by intrathecal administration of Arc shRNA. Conclusion PNS (60 Hz, 0.3 mA) can relieve bone-cancer-induced allodynia and hyperalgesia by upregulating Arc protein expression and then by decreasing GluA1 transcription in the spinal cord dorsal horn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency-dependent ERK phosphorylation in spinal neurons by electric stimulation of the sciatic nerve and the role in electrophysiological activity

The phosphorylation of extracellular signal-regulated kinase (pERK) in DRG and dorsal horn neurons is induced by the C-fiber electrical stimulation to the peripheral nerve. The present study was designed to investigate the expression and modulation of pERK in the rat dorsal horn neurons produced by repetitive electrical stimulation, and its involvement in the electrophysiological activity of do...

متن کامل

Chronic morphine treatment enhances sciatic nerve stimulation-induced immediate early gene expression in the rat dorsal horn.

Synaptic plasticity is a property of neurons that can be induced by conditioning electrical stimulation (CS) of afferent fibers in the spinal cord. This is a widely studied property of spinal cord and hippocampal neurons. CS has been shown to trigger enhanced expression of immediate early gene proteins (IEGPs), with peak increases observed 2 hour post stimulation. Chronic morphine treatment has...

متن کامل

Retraction: Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states

BACKGROUND Although pregabalin therapy is beneficial for neuropathic pain (NeP) by targeting the CaVα2δ-1 subunit, its site of action is uncertain. Direct targeting of the central nervous system may be beneficial for the avoidance of systemic side effects. RESULTS We used intranasal, intrathecal, and near-nerve chamber forms of delivery of varying concentrations of pregabalin or saline delive...

متن کامل

Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats.

Under physiological conditions, nociceptive information is mainly processed in superficial laminae of the spinal dorsal horn, whereas non-nociceptive information is processed in deeper laminae. Neuropathic pain patients often suffer from touch-evoked pain (allodynia), suggesting that modality borders are disrupted in their nervous system. We studied whether excitation evoked in deep dorsal horn...

متن کامل

Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B

Because of the incomplete understanding of the molecular mechanisms that underlie chronic pain, the currently available treatments for this type of pain remain inefficient. In this study, we show that Netrin-4, a member of the axon guidance molecule family, was expressed in dorsal horn inner lamina II excitatory interneurons in the rat spinal cord. A similar expression pattern for Netrin-4 was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018